Temporal Classifiers for Predicting the Expansion of Medical Subject Headings
نویسندگان
چکیده
Ontologies such as the Medical Subject Headings (MeSH) and the Gene Ontology (GO) play a major role in biology and medicine since they facilitate data integration and the consistent exchange of information between different entities. They can also be used to index and annotate data and literature, thus enabling efficient search and analysis. Unfortunately, maintaining the ontologies manually is a complex, error-prone, and time and personnel-consuming effort. One major problem is the continuous growth of the biomedical literature, which expands by almost 1 million new scientific papers per year, indexed by Medline. The enormous annual increase of scientific publications constitutes the task of monitoring and following the changes and trends in the biomedical domain extremely difficult. For this purpose, approaches that try to learn and maintain ontologies automatically from text and data have been developed in the past. The goal of this paper is to develop temporal classifiers in order to create, for the first time to the best of our knowledge, an automated method that may predict which regions of the MeSH ontology will expand in the near future.
منابع مشابه
A parametric model for predicting cut point of hydraulic classifiers
A new parametric model was developed for predicting cut point of hydraulic classifiers. The model directly uses operating parameters including pulp flowrate, feed particle size characteristics, pulp solids content, solid density and particles retention time in the classification chamber and also covers uncontrollable errors using calibration constants. The model applicability was first verified...
متن کاملPredicting Implantation Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection Using Data Mining Techniques
Objective The main purpose of this article is to choose the best predictive model for IVF/ICSI classification and to calculate the probability of IVF/ICSI success for each couple using Artificial intelligence. Also, we aimed to find the most effective factors for prediction of ART success in infertile couples. MaterialsAndMethods In this cross-sectional study, the data of 486 patients are colle...
متن کاملگرایش موضوعی پایان نامه های دانشکده مدیریَت و اطلاع رسانی پزشکی (سال تحصیلی 1380-1386)
Introduction: Thesis commonly reflects student's research interests, which are formed in the university education courses. Formation problem in thesis is one of the most important subjects in these research documents. Limitations and situations govern in research scope causes author (researcher) to limited framework of topic as problem base in his or her research. Investigation of thesis conten...
متن کاملResearch and applications: Improving image retrieval effectiveness via query expansion using MeSH hierarchical structure
OBJECTIVE We explored two strategies for query expansion utilizing medical subject headings (MeSH) ontology to improve the effectiveness of medical image retrieval systems. In order to achieve greater effectiveness in the expansion, the search text was analyzed to identify which terms were most amenable to being expanded. DESIGN To perform the expansions we utilized the hierarchical structure...
متن کاملTextual Methods for Medical Case Retrieval
Medical case retrieval (MCR) is information retrieval in a collection of medical case descriptions, where descriptions of patients’ symptoms are used as queries. We apply known text retrieval techniques based on query and document expansion to this problem, and combine them with new algorithms to match queries and documents with Medical Subject Headings (MeSH). We ran comprehensive experiments ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013